Obstacles to using E-Learning in an Advanced Way

Annika Jokiaho1, Birgit May2, Marcus Specht3 and Slavi Stoyanov3
1 Ludwigsburg University of Education/E-Learning, Ludwigsburg, Germany
2 University of Stuttgart/E-Learning, Stuttgart, Germany
3 Open University Netherlands/Wetten Institute, Heerlen, Netherlands

Abstract—E-Learning has become a common way to teach and learn. The number of technologies for a variety of educational purposes is already quite high and constantly rising. Scientific experiments and studies increasingly confirm the usefulness of various technologies for teaching purposes. Nevertheless, there is still a lack of formal training and support of digital skills within faculty training. Studies that report the potential of E-Learning are matched by those reporting the obstacles. Universities throughout Europe have now established Learning Management Systems (LMS); instead of using these to their full potential, lecturers often just upload their syllabus and some reading material. At the same time, higher education institutions all over Europe are expected to implement innovative technologies and scenarios such as Open Educational Resources (OER) or Massive Open Online Courses (MOOCs), but only a small number of universities actually do so. What are the reasons for not utilizing the pedagogic potentials of E-Learning? What findings does the current research provide on this topic? Which obstacles can be derived from studies and what can be done to avoid them? What are the individual obstacles of one institution or university? This contribution summarizes obstacles that were identified in recent studies and discusses possible solutions to finding connections between obstacles to mitigate the negative effects. It also describes a data collection method (group concept mapping) suitable for identifying the individual obstacles at an institution or university using a study in the European ERASMUS+ project AdEuLeT (Advanced Use of Technologies in Higher Education) as an example.

Index Terms—E-Learning, Group Concept Mapping, Higher Education, Obstacles.

I. INTRODUCTION

Most universities in Europe have been using Learning Management Systems (LMS) to enrich their face-to-face teaching [1], [2] and have specific departments for E-Learning [2], [3]. Nevertheless, for most higher education lecturers in Europe, E-Learning means uploading documents on the LMS [4], or generating content [5]. Only few lecturers use the pedagogic potentials of E-Learning [6]. While cooperative and collaborative scenarios are rarely used, higher education institutions, in particular, should be at the forefront of innovative teaching and learning scenarios with digital media. There are several obstacles preventing the establishment of new ways of teaching in higher education [7], leading to a discrepancy between expectations and reality. Several studies investigate the use of E-Learning [8], [9] or sustainability [10]. Only little research can be found concerning obstacles to using E-Learning. Mahmodi and Ebrahimzade [11] have investigated obstacles for students using E-Learning. Knowing the obstacles to using E-Learning can help to understand the situation at the individual university or workplace better. Therefore, this article summarizes obstacles identified in recent studies, and subsequently discusses possible approaches to overcoming these obstacles. Due to the diversity of universities and institutions, this article also describes a method of collecting the obstacles at different institutions with the group concept mapping (GCM) method. This article presents results from a literature review and a GCM study carried out within the framework of the European ERASMUS+ project AdEuLeT (Advanced Use of Technologies in Higher Education).

II. METHODS

In order to identify obstacles to using E-Learning from the perspective of a lecturer, a literature review was conducted. The keywords used for the research within common educational databases were “barriers, obstacles, pitfalls” as well as “E-Learning, online-teaching, and learning management system”. Moreover, the studies had to fulfill the following criteria: the studies had to be conducted in the field of higher education, the studies had to have a focus on obstacles to using E-Learning for lecturers, as well as being empirical studies, and published in the year 2010 or later. Most of the studies are from the United States, such as the studies by Allen and Seaman [12], Bacow, Bowen, Guthrie, Lack, and Long [13], Baran [14], Dahlstrom, Brooks, and Bichsel [6], as well as Lloyd, Byrne, and McCoy [15]. There are only a few studies from Europe, such as Cabral, Pedro, and Gonçalves [16] from Portugal or Moscinska and Rutkowski [17] from Poland, and Sanchez, Hueros, and Ordaz [18] from Spain. These studies focus on finding obstacles to the use of E-Learning at one specific university. A review of literature from the United Kingdom can be found in Islam [19]. Three studies are from Africa, like the studies by Mutisya and Makokha [20] and Tarus, Gichoya, and Muumbo [21] from Kenya, as well as the study of Mwakyusa and Mwalyagile [22] from Tanzania. Studies investigating obstacles to using E-Learning in the Middle East can be found for Iraq in Al-Azawei, Parslow, and Lundqvist [23] for Iran in Farzaneh, Mousavi, and Maghahi [24], as well as Al-Shboul [25] from Jordan. Results from Australia can be found in the study of Anderson [26] and from Asia in Arinto for the Philippines [27].

The collection of obstacles from the literature review can be compared with the results of the GCM study.
The AduLeT project used the group concept mapping (GCM) method in the study. GCM [28] (see also [29], [30]), is a participative research methodology that facilitates a group of people arriving at a shared vision about a particular issue (e.g. problems with the use of ICT in teaching). The participants are asked to participate in a few commonly used activities such as generating ideas, sorting ideas into groups and rating ideas on some values (e.g. importance of problems with the use of ICT in teaching and difficulties in solving these problems). While the participants generate, sort and rate ideas individually, two advanced multivariate statistical techniques, multidimensional scaling (MDS) and hierarchical cluster analysis (HCA) - aggregate the individual contributions to identify patterns in the data. Visualizations of the results such as concept maps and pattern matches help to interpret the findings. GCM shows how ideas are related, how they are grouped in more general categories, and how much emphasis is given to each idea and cluster.

The procedure included the following steps:

1. Idea generation. The participants were asked to brainstorm as many ideas as possible, completing the following focus prompt: “A problem for the use of ICT in my teaching is ...”

2. Sorting the ideas. The participants were asked to group the ideas on similarity of meaning giving each group a name.

3. Rating the ideas. The participants were asked to rate the ideas on (a) the relative importance of each statement about problems with using ICT in teaching, using a scale ranging from 1 (relatively unimportant) to 5 (very important); and (b) rate each statement on how difficult/easy it is to solve the problem with using ICT in teaching, applying a 1-to-5 scale where 1 = very difficult and 5 = very easy.

4. Analysis of the data applying MDS, HCA, correlation and significant tests.

Within this article the results of step one and step two will be described. The analysis of step three and step four is still ongoing and will be part of future publications.

III. RESULTS

A. Obstacles identified in the literature

The identified obstacles were divided into three different areas: personal factors, institutional and cultural factors, and technical factors. Personal factors include all obstacles that are dependent on the person. Institutional and cultural factors contain obstacles that are shaped by the institution and which lecturers cannot control. Technical obstacles refer to the use of technologies and infrastructure [4].

Personal factors: Time was mentioned in several studies (e.g. [14], [15], [19], [20], [26]). Specifically, the additional time needed for the preparation of E-Learning, is a major obstacle for lecturers, since there is generally more time needed than in face-to-face teaching [14], [15], [20]. Anderson [26] found in his study at a large Australian university that the flexible use of time in an online environment is also an advantage for lecturers experienced in E-Learning. For lecturers with less E-Learning experience, the lack of time is often a problem. The academic status might also have an impact. In a study with 386 lecturers from 36 colleges at a large state university system in the United States, Shea [31] found out that assistant, associate and full professors were more demotivated by the additional time needed for online teaching than part-time or non-traditional faculty such as instructors or teaching assistants. Lecturers with less experience with E-Learning seem to be less self-confident and have more doubts about their skills to teach online. Some respondents of the study by Anderson [26] were of the opinion that E-Learning is more time consuming, even if they had not yet tried it out themselves. Other respondents report a need for additional support. Lloyd, Byrne and McCoy [15] found that lecturers with less E-Learning experience generally rate obstacles higher in comparison to experienced users. Individual motivation is another personal factor in the use of E-Learning. The lack of motivation was mentioned as an obstacle in several of the studies (e.g. [14], [26]). Furthermore, support has an impact on the motivation of lecturers [14]. Anderson [26] found out that self-efficacy has a high impact on motivation. Self-efficacy again depends on previous experiences. Moreover, older studies show that age and employment status might have an impact on motivation. In the study by Shea [31], younger faculty (<45 years), in particular, had more doubts concerning the use of E-Learning due to lack of recognition of online teaching in their institution. By contrast, the flexibility of time by using E-Learning has the largest impact on the motivation of lecturers.

Institutional and cultural factors: From a lecturer’s point of view, two obstacles concerning institutional and cultural factors were identified: support and recognition. At most higher education institutions, a variety of approaches are available for lecturers to support the use of E-Learning. Training courses are an essential part of the support. A wide range of topics should be offered in training courses, from using specific tools to pedagogical issues, in order to enable lecturers make advanced use of E-Learning [4], [23], [26]. The number of training courses attended seems to be a key factor in the degree of utilization of learning management systems [16]. Empty courses are much more likely to be found by lecturers that have not attended any training course. Lecturers that have taken part in three or even more training courses use the learning management system at a much higher level, technically as well as pedagogically. The lack of recognition of online teaching is an obstacle to using E-Learning (e.g. [13], [26]). Hence, Bacow et al., [13] suggest providing incentives for faculty, such as a stipend or reducing responsibilities in other areas. Since faculty time is the scarcest resource for lecturers, a financial incentive could be less appealing than having more time for developing E-Learning courses. In the study by Shea [31] the lack of recognition was even the biggest obstacle to using E-Learning at all.

Technical factors: Technical factors include skills in using E-Learning tools, usability, and infrastructure. There is wide agreement in the various studies that lecturers’ existing competences influence the use of E-Learning (e.g. [6], [23]). The range of computer literacy required for the use of E-Learning tools in teaching is very wide. The basic level would be tasks such as uploading or storing files. However, the ways to use learning management systems are endless and an exhaustive use of all available options would not be expected [26]. Competent use however, requires knowledge of the learning management
The first outcome of the GCM, is a point map which is a result of the MDS analysis (see Figure 1). It shows all the 87 reported obstacles and how they are related by locating similar terms close to each other in the two-dimensional space (a point map). MDS scaling also assigns each idea a bridging value (between 0 and 1) after computation of the map. A lower bridging value means more participants have grouped the statements with ideas around it. A higher bridging value indicates that the idea has been sorted together with statements further apart. MDS scaling also produces a statistic, called stress index (a value between 0 and 1) to indicate the goodness-of-fit between the mathematical model as represented by the point map and the raw sorting of the participants aggregated by a binary similarity matrix. In this project the stress value is 0.26, which is not only in the accepted range but it is also considered quite good in terms of the study’s internal validity [34]. The next steps in the interpretation of the data was identifying thematic areas on the map by applying hierarchical cluster analysis (HCA).

Figure 2. Obstacles categorized

Obstacles identified in the Group Concept Mapping Study

A customized web-based environment was created specifically for the AduLeT project to facilitate data collection and analysis (Concept System Global Max) [33].

B. Obstacles identified in the Group Concept Mapping Study

The following issues regarding the use of E-Learning were identified: lack of organization support; teachers’ lack of knowledge and skills; students’ lack of knowledge, skills and motivation; lack of time; lack of hardware and software; and lack of reward and recognition (see Figure 2).

IV. DISCUSSION AND CONCLUSIONS

Although the literature review and GCM identified different categories of obstacles to adopting E-Learning, their findings are similar. Both methods have revealed issues related to availability of E-Learning tools, the need for technical and pedagogical support by organizations, insufficient time to learn E-Learning tools and implement them into teaching practice, teachers’ low self-efficacy in educational technology knowledge and skills, and lack of recognition for the efforts teachers have made. A specific issue that the GCM has highlighted is shortage of knowledge, skills and motivation among students. Some more specific issues in this category are the need to adapt to learners’ different levels of knowledge and skills, efforts to combine technology with effective teaching methods, and lack of appreciation from students. Teachers’ low level of motivation as identified in the literature review, did not appear as a separate cluster in the GCM study but all other barriers depicted in the study negatively affect the motivation of teachers to apply E-Learning applications.

In the future we are going to analyse how the participants rate the obstacles on importance and easy/difficult to be overcome. In addition, we compare...
ratings of different groups of participants and identify long- and short-term measures.

ACKNOWLEDGMENT
The AduLeT project is funded by the ERASMUS+ Programme of the European Union.

REFERENCES
[26] C. Anderson, C., Barriers and enablers to teachers’ adoption of online teaching at an Australian University, Dissertation RMIT University, 2012.

AUTHORS
A. Jokiaho is head of the E-Learning department and the coordinator of the AduLeT project, Ludwigsburg University of Education, Ludwigsburg GERMANY (e-mail: jokiaho@ph-ludwigsburg.de).
B. May was head of the E-Learning department and the coordinator of the AduLeT project, Ludwigsburg University of Education. She is now with the Department of E-Learning, University of Stuttgart, Stuttgart GERMANY (e-mail: birgit.may@tk.uni-stuttgart.de).

The International Conference on E-Learning in the Workplace 2018, www.icelw.org
M. Specht is Professor of Advanced Learning Technologies and he currently heads the CELSTEC Learning Technology Labs at the Open University of the Netherlands, Herleen NETHERLANDS (e-mail: marcus.specht@ou.nl).

S. Stoyanov is an experienced researcher and consultant in innovative design and evaluation of learning and training at the Open University of the Netherlands, Herleen NETHERLANDS (e-mail: slavi.stoyanov@ou.nl).

Manuscript received 22 March 2018. This work was supported in part by the European Union under Grant 2016-1-DE01-KA203-002915.

Published as submitted by the author(s).